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Abstract!

This paper presents a new approach to a gesture-tracking system using real-time range on-demand.

e Sy represents a gesture-contrelled interface for interactive visual exploration of large data sets.
The paper describes a method performing range processing only when necessary and where necessary.
Range data is processed only for non-static regions of interest. This is accomplished by a set of filters on
the color, motion, and range data. The speedup achieved is between 41% and 54%. The algorithm also
includes a robust skin-color segmentation insensitive to illumination changes. Selective range processing
results in dynamic regional range images (DRRIs). This development is also placed in a broader context

of a biological visual system emulation, specifically redundancies and attention mechanisms.

!This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence
Livermote National Laboratory under contract number W-7405-Eng-48. UCRL-JC-137651
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1 Introduction

Recent years have seen a drastic increase in the size and complexity of scientific data. The National
Institutes of Health’s (NIH) Visible Human project generated data sets of a single 3-D volume consisting of
12 billion elements. Nearly a terabyte of satellite data is produced daily. Advanced physics simulation here,
at Lawrence Livermore National Laboratory (LLNL), is responsible for generating large data sets, which are
expected to increase to one terabyte every five minutes by 2004. Traditional visualization represents the last
step in data processing. However, the efficiency of such processing suffers when errors are discovered at this
point, and the entire data analysis cycle has to start over. Therefore, the trend in data growth is amplified
by increasing requirements for interactive data access, display, exploration, analysis and collaboration.
Focused on the development of efficient techniques addressing these requirements, the SAVAnTS (Scalable
Algorithms for Visualization and Analysis of Terascale Science) project is a collaboration between the
Center for Applied Scientific Computing at LLNL and multiple academic partners. With such substantial
amounts of data to explore, we are also interested in developing new interactive settings that would allow
scientists to explore their data in a more intuitive environment. The data would be projected onto a large
screen (Figure 1(a)), and updated in real-time following gesture-based commands of interacting scientists.
The gesture-tracking system described in this paper will be responsible for supplying data manipulation
parameters to interactive data exploration and collaborative visualization software (Figure 1(b)), and to

virtual reality systems.

(@)

Figure 1: (a) A four-projector display with a resolution 2560x2048 used for interactive applications. (b)
An example of intaractive manipulation of isosurface and volume rendering parameters.



Since the system is being developed as a front end for gesture-controlled large-scale visualization and
virtual reality manipulation, certain requirements and complications are obvious. First, 3-D information
is required, not necessarily at a video-frame rate, but at least a few times per second (optimal parameters
should be determined as a result of testing on a large group of people). Second, not only arms or hands,
but also the entire body of the interacting person is moving. More over, interaction will take place in
front of the large screen where the data being manipulated will be displayed. Most of the time the data
will be updated dynamically as a result of such manipulations; and, therefore, traditional techniques such
as background subtraction cannot easily separate a figure from the background. Third, motion of the
interacting person should be natural and should result in intuitive data manipulation, where intuitive
means easily learned and fast to providee immediate results.

Object tracking from image sequences is a very important research domain. Goals of object tracking in-
clude segmenting each frame into differently moving objects, selecting the object of interest, and analyzing
its motion during the entire sequence or multiple sequences. Object tracking, therefore, involves processing
of both spatial and temporal data. A number of applications is dealing with tracking the motion of the
human body. These applications include video-surveillance, gesture-based interfaces for multimedia appli-
cations and systems, and interfaces for people with disabilities that prevent them from using the standard
input technology, and videoconferencing. The most popular mode of human-computer interaction (HCI)
is based on devices like keyboards and mice, which limit the speed and naturalness of the interaction [1].
Researchers continue to investigate ways to use human communication through movement as a natural
means of interacting with computers. They strive to design and develop computer interfaces that capture
and interpret such human movement. Another application is object manipulation in virtual environments.

Traditional approaches to tracking typically relied on segmentation of the intensity data, using motion
or appearance data. A majority of the methods began by segmenting the human body from the back-
ground. For instance, in “blob approaches” people were modeled as a number of blobs resulting from pixel
classification based on their color and position in the image. Wren et al. [2] achieved segmentation by
classifying pixels into one of several models, including a static world and a dynamic user represented by
gaussian blobs. Yang and Ahuja [3] used skin color and the geometry of palm and face regions for seg-

mentation stages of their system. A Gaussian mixture (with parameters estimated by an EM algorithm)




modeled the distribution of skin-color pixels. Rehg and Kanade [4] used a 3-D hand model to track a
hand. They compared line features from the images with the projected model, and performed incremental
state corrections. Similar work was presented by Kuch and Huang [5] in which the synthesis process could
fit the hand model to any person’s hand. Bobick and Wilson [6] treated gesture as a sequence of states
and computed configuration states along prototype gestures. Yacoob and Black proposed parameterized
representation of human movement [7]. Cutler and Davis [8] segmented the motion and computed a moving
objects self-similarity (including human motion experiments). A review by Aggarwal and Cai [9] classified
approaches to human motion analysis, the tasks involved, and major areas related to human motion inter-
pretation. A review by Pavlovic et al. [1] addressed main components and directions in gesture recognition
research for HCL.

It is known that color-based skin detection techniques are susceptible to variability in lighting condi-
tions [1]. Some common solutions included [1]: specially colored gloves or markers, restrictive backgrounds
or clothing, prior knowledge of initial hand positions, or movement restrictions. A goal of our project
is to exclude such simplifications. Instead, we use the SCT/Center algorithm that can handle changing
illumination. It was originally developed for skin cancer detection using color features [10]. Later the
algorithm was successfully tested for position estimation of micro-rovers [11].

Usefulness of 3-D data in gesture-analysis applications is not questionable. Since most machine vision
system try to recover useful information about a scene from its projections, having three-dimensional (3-D)
data eliminates ambiguities in solving the inversion of a many-to-one mapping. The projection of human
movement often can be affected by the observation viewpoint and the distance from the camera [7]. Most
gesture-tracking and recognition applications could certainly benefit from including range data and having
more information recovered from a scene. Until recently, however, using range data for tracking was not
feasible because of the speed and cost considerations. Some authors used multiple cameras and models to
obtain 3-D locations of body parts. Azarbayejani and Pentland [12] triangulated on blobs composing a
model. Gavrila and Davis [13] addressed whole-body tracking with four cameras placed in the corners of
the room. Segen and Kumar [14] used depth cues from projections of the hand and its shadow for 3-D hand

pose estimation. Otherwise, range data was used in motion analysis primarily in an offline mode [15, 16].




Recent availability of less expensive, faster range data makes it a feasible additional source of infor-
mation for tracking. This is the first real-time gesture-tracking system that utilizes on-demand range in
both spatial and temporal representations (some initial results have previously appeared in [17]). It will be
applied to natural navigation and visualization of large data sets. The method is also applicable to virtual
reality systems. Oda et al. [18] reported application of a real-time range to virtual reality which utilized
comparison of the depth information in real and synthetic data. In addition to efficient range process-
ing, the proposed method also deals with the major shortcoming of color-based localization methodologies

variability of the skin-color classification results under different llumination conditions.
2 Description of the Method

Both color and range image are grabbed synchronously, and color image is extracted and rectified (cor-
rected for lens distortions}. However, range is not processed at this point (Figure 2) as one would expect.
Instead, numerous filters are applied to the color data. These filters achieve a goal of localizing regions of
interest (ROIs), specifically hands for our application (since their motion will provide input to visualization
Prograrns).

First, color feature filters are applied. The spherical coordinate transform (SCT) separates color and
brightness information. Color normalization provides SCTs insensitivity to variations in illumination (see
Appendix 2). LAB space is computed, and pixels are classified as skin are computed using derived statistical
data. A skin classifier with minimum distance classifier using Mahalanobis distance (see Appendix 2) selects
pixels that can be considered skin pixels.

Noise is removed by a sequence of erosions and dilations. The connected component analysis is per-
formed next by scanning from left to right and from top to bottom, labeling, and evaluating equivalencies.
Resulting regions are sorted, and small regions are removed from further consideration. Region area is
evaluated with respect to the image size. Other geometry and shape filters are designed to eliminate regions
with unlikely shapes for human faces or hands, including long regions, regions with very few pixels (less
than 30 %) classified as skin.

Human hands and faces are difficult to detect when only color information is used. Experiments
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Figure 2: Algorithm of the range on-demand approach.

sizes, and a robotic hand that could be following human gestures in a completed back-end virtual reality
application. To confuse the program, one of the objects, a ball in the center of the scene, is given color
properties very similar to human skin.

That is why additional filters are set to prevent such confusion. A static region detection filter (defined
for frames after the first) determines the absence of current motion for a given region. The filter evaluates
current motion proportionally to the average noise level and the image size (since motion considered
neglectable for relatively large images can be considered important for smaller ones). The process results

DT,

in dynamic regional range images (DRRIs). Static regions are shown on DRRIs as outlines on




range is not computed for them. DRRIs contain range information for regions of interest (with pixels still
classified as skin after color- and geometry-based filters) moving in the current frame, outlines for static
regions and recent motion information for both.

Only non-static regions are selected for range processing, which takes place at this point (again let us
note that color and range were grabbed synchronously, only the range processing was postponed). Stereo
is estimated only for selected ROIs. Thus, the computation bottleneck is greatly reduced (see the next
section for speedup percentages vs. region sizes).

Next, the depth analysis filter evaluates whether ROIs exhibit face or hands geometry; since the depth
is known at this step, absolute sizes are computed. Non-human regions are excluded from the motion
computation, but are currently still tracked on the color images and DRRIs for visual purposes. If skin-

colored moving objects pass previous filters, then they are unveiled at this point {and not included into

3 Experimental Results

The following experiments involve application of the algorithm to color and range image sequences of
gestures. Triclops color stereo vision system (manufactured by Point Grey Research, Vancouver, Canada)
is used to capture these sequences. The module connects to a single-processor Pentium III PC. Range
information is recovered in real time from a correlation-based trinocular stereo algorithm (see Appendix 1
for details about the algorithm).

Typical color and range images produced by the stereo vision system are shown in Figure 3. Closer
objects appear lighter in the range data, except for the darkest areas (for instance, some hair and far wall
regions), indicating that no correspondence was found during the stereo matching process. As a result
of applying color information-based filters, skin regions are selected (shown as white areas in the binary
image in Figure 4(a), and as a rectangular enclosing boxes in Figure 4(b)).

Selected frames from sequences of intensity images and DRRIs are shown in Figures 5 and 6. Frames
are chosen when both color and range information were scheduled to be processed (every n-th frame in the
algorithm, where n=>5). To tell the preparation stage from the nucleus and retraction stages, interactors

will use a fist as if grabbing the object being manipulated. That is why frames taken during gestures
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Figure 4: Pixels classified as skin as a result of applying color information-based filters.

signifying object operations show persons using closed fists. Since manipulation of virtual objects is one
of popular applications of hand gestures [1], the background represents a scene with virtual objects and
a robotic arm-manipulator, one of them (a ball) is skin-colored. Of course, the main application of the
system, as discussed in the Introduction, will be interactive exploration of visualized large data sets.

The first sequence (Figure 5) shows tracking of a zoom gesture (hand moving toward the camera). First
frame processing results show that all three candidate skin regions are detected: the face, the hand, and
the virtual ball (created as a distracter with color similar to skin). These regions pass color feature filters,
noise removal and region geometry filters, and static region detection filters (since relative motion is not
defined for the first frame). However, the ball is not tracked beyond the first frame since it is obviously a

static object.



Figure 4: Tracking of skin-color regions (first and third columns) and progress in DRRIs (second and fourth
columns) for zoom gesture (hand moving towards the camera).



Figure 5: Tracking of skin-color regions (first and third columns) and progress in DRRIs (second and fourth
columns) for translation gesture (hand moving side-to-side).



Note that the tracking system developed is a front-end for the interactive visualization software, and,
therefore, background subtraction is not the best option in the general case. No apparently static regions
are processed (the face and the ball). Otherwise, they would have been excluded from motion analysis on
the basis of depth or size or both by the last filters. Hand motion was detected in frames 3, 7 and 10, and
reflected in respective DRRIs.

Similarly, the second sequence tracking a translational gesture (hand motion side-to-side in Figure 6)
contains hand motion in six frames (not considering the first one} and head motion in two frames (8 and
9). Obviously, keeping one’s head completely motionless is not a practical consideration, and head motion
is present in all frames. In most frames, however, it does not pass the small motion filter (based on the
average noise level and the image size).

DRRIs can be included in motion analysis, trajectory computation, gesture recognition, to determine
what types of gestures are natural and feasible for robust tracking and interpretation for interactive explo-
ration of large data sets and virtual environments. They can be easily plotted in a 3-D space for movement
trajectory parameterization. Also they can produce (also in 3-D) templates for recognition of movements
somewhat similar to the temporal templates [19].

Tables 1 and 2 contain statistics for corresponding motion sequences. Frame numbers correspond to
respective frames in figures. “Number of ROIs” column indicates regions selected for range processing, next
column contains their total area. Percentage of total image size is also included, as well as the total time
for this frame (for the entire algorithm to process it) and the speedup over an average non-ROI processing
time per frame (488 ms).

Average frame rate for longer sequences is also measured and averaged. Processing 1 range image for
every 4 color images is done at a rate of 10.6 frames per second for a 320x240 image size, and at a rate of
16.5 frames per second for 160x120 images. Therefore, the method is applicable to the real-time processing.
More over, since the Triclops library is currently optimized for thread parallel processing, a much greater
speedup can be achieved on a dual-processor NT machine (we plan to move the system there in the near
future).

The speedup is significant (between 41% and 54%). However, according to equation 3 (see Appendix

1), the speedup per frame should be proportional to the ratio between ROI and image areas. Experiments
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Table 1: Statistics for the forward hand motion.

Frame | Number | Total | % of | Time for | Speedup,
(Fig. 5) | of ROIs | area of | area | this frame, %
ROIs | size ms

1 3 5105 | 6.65 281 42.5
2 0 0 0 240 50.8
3 1 2030 | 2.64 261 46.6
4 0 0 0 233 52.2
5 0 0 0 227 53.4
6 0 0 0] 233 52.2
7 1 3268 | 4.26 274 43.9
8 0 0 0 233 52.2
9 0 0 0 234 52.1
10 1 4992 | 6.50 280 42.6

Table 2: Statistics for the side-to-side hand motion.

Frame | Number | Total | % of | Time for | Speedup,
(Fig. 6) | of ROIs | area of | area | this frame, %
ROIs | size ms

1 3 8690 | 11.32 287 41.1
2 0 0 Q0 240 50.8
3 | 690 0.90 267 45.3
4 1 837 1.09 267 45.3
5 1 837 1.09 267 45.3
6 0 0 0 233 52.2
7 1 868 1.13 267 45.3
8 2 6719 8.75 281 42.5
9 2 6425 8.37 280 42.6
10 0 0 0 241 50.7

show that, for example, 6-8% ratio yields a gain of slightly more than 40% over non-ROI implementation.
One of the reasons is that rectification (distortion removal} is still done on the entire image.

Another reason is that actual region sizes (for the correspondence matching between cameras) also
include the number of disparities d searched: for a K by L region, a left-to-right pass is done for a K (L +d)
region, and a top-to-bottom pass is performed for a (K + d)L region. Matching on the entire image does
not encounter this effect since there is obviously no data outside the image boundaries. Yet, these reasons
do not account for the differences between the theoretical and experimental speedup. An implementation

maximizing potential advantages of using ROIs can bridge this gap.
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Motion trajectories for both hand movements in a 3-D space are shown in Figure 7. Zoom gesture
trajectory is shown as a solid line, and translation is denoted with a dashed line. It is obvious that zoom
gesture represents a significant change in Z coordinate relative to the almost constant depth during the
translation. Data from trajectory computations will be transfered dynamically into an appropriate (for

the task) interactive visualization software.
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Figure 7: Motion trajectories for both hand movements in a 3-D space: zoom gesture trajectory is shown
as a solid line, and translation is denoted with a dashed line.

Table 3 summarizes application of the method to a total of 400 images taken in different settings
with one or two people performing various gestures. Quantitative analysis is performed for major groups
of filters in the method. The only exception is a combination of color feature filters and noise removal
filters, because, depending on the scene complexity, total number of regions identified by color could reach
hundreds. All hands used for manipulation (where manipulation is identified by “grabbing”) were detected
(a total of 552 since some manipulations require two hands). At the end, false positives (FPs) represent
only 3.5%, false negatives are always less than 5%. The table also shows that static region detection yields

not only a significant speedup, but also an improved localization of hands during manipulations.
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Table 3: Results of hand(s) tracking in 400 images.

Filters applied Detected | FPs | FPs, %
Color feature and noise removal 3576 3024 | 84.56
Region geometry 1524 972 | 63.78
Static region detection 716 164 22.91
Depth and absolute size 572 20 3.5

4 Additional Aspects of Real-Time Range

Increased processing speed can also facilitate a combination of intensity- and range-based input features.
Range data enables localized search for specific features, which improves tracking reliability and speed.

Registered range data provides an additional information valuable for segmentation and tracking. Of-
ten, an object of interest can be separated from other objects or background by depth alone. In other cases,
having fewer
data is an important consideration for model matching [15].

Real-time constraints such as temporal correlation produce a possibility of searching within a smaller
region, based on the match in the previous frame. For the range image, this involves depth planes immedi-
ately surrounding the plane where a hand (or face) was found in the previous frame. Subsequent search in
the subset of the intensity data corresponding to these planes produces the position of the body part in the
current frame. Therefore, intensity data is thresholded for the certain range and depth. Such combined
use of i
increased reliability due to a decreased number of false positives that could fall in such space. Rather than
processing all pixels, this allows us to select only those pixels with the certain depth, based on the depth
of the previously detected region of interest.

Two intensity images from a sequence of the speaking person are shown in Figures 8(a-b). More images
are not displayed due to space restrictions. A skin detection algorithm is applied to the intensity data from
Figure 8(a). Results of skin thresholding following color segmentation are shown in Figure 8(c). Pixels
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Instead of applying the color segmentation again, it is possible to take range data into consideration
by selecting one or more depth levels where a region of interest was found (Figure 8(e)). Since the motion
between two frames is small, the same level indicates approximate location of the hand in the next frame
(red areas in Figure 8(f)). This level, along with the two closest depth levels (before and after), constitute
the search space for the current frame (instead of the entire image). Search in the range domain prevented
us from considering intensity-based segmentation artifacts (such as a curtain and a belt). Segmentations

along intensity and depth channels also can be performed independently and then combined.

(d) (e)

Figure 8: (a-b) Intensity images of the speaker; (c) results of skin segmentation and thresholding; (d-e)
range images with selected depth levels.

5 Towards Emulating Redundancies in Biological Vision, and Analogies
with Human Attention

One of the aspects of biological vision underutilized in the past for building image understanding systems
is data redundancy. Computer vision systems could not afford such extravagant solutions. Combination
of real-time intensity and range input data sets proposed by the described method provides possibilities
for exploration of other advantages of such redundancies we can now afford. The complexity of certain

tasks, however, will probably make straight-forward solutions unfeasible in the foreseeable future. Range
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processing can be considered one of such tasks. Accuracy demands for many tasks rise faster than hard-
ware improvements. That is why recent precision scanners spend more time on range acquisition and
computation than older, less accurate models. For instance, it takes on average more then 30 seconds to
acquire and compute range data using a K2T scanner on a SUN SPARC 20, and more than 2 minutes
using a Cyberware scanner on Silicon Graphics O2 (considering higher precision achieved with the latter).
This makes an interesting case for applying other human perception phenomenons to this problem.

The phenomenon of attention in human vision [20] is a biological solution to the problems of complexity
and overabundance of data. It is a means to put the limited resources of the visual system into the right
place (and the right orientation) at the right time, and to set the mind in the right context. An important
point is the limited amount of available computational power, both in our brain and in the computer
(for range processing) that we actually have. Omn the biclogical side, this might be the reason for the
usefulness of attentional mechanisms. The attentional mechanism can then be seen as the tool for granting
“computational resources” to the tasks, according to their dynamic priorities. Another view of attention
is as a mechanism for determining regions of interest in an image (DRRIs in the proposed approach).

Attention includes certain aspects [20] similar to the properties of the described system such as filtering
unnecessary data and attending to selected sources only (such as hand motion in the described system),
searching for a particular feature (skin color), and expecting something to happen meanwhile attending to

empty space (static region outlines in DRRIs).
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operators in such a way that a heuristic evaluation function can guide their application. A sketch of this
part of such a system is given in the following:

1) the space of states S includes states that correspond to sets of ROIs,

2) the set of operators includes transformations T between the states in the temporal and spatial senses,

3) there are means of computing the cost of an arc (s, s2),

4) a current state at any time is represented by a DRRI, and

5) a goal-state predicate is defined, which returns true when a state represents a completely tracked

{and recognized) gesture.
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Thus, the process of gesture-tracking with real-time range on-demand may be thought of as finding a
path through a “regional attention” kind of graph. The path nodes corresponding to states of ROIs. A
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classification of the gesture sequence.
6 Conclusions and Future Work

This paper presented a new approach to a gesture-tracking system using real-time range on-demand. The
system represents a gesture-controlled interface for interactive visual exploration of large data sets. The
paper described a method performing range processing only when necessary and where necessary. This is
achieved by a set of filters on the color, motion, and range data. The speedup achieved is between 41%
and 54%. The algorithm also includes a robust skin-color segmentation insensitive to illumination changes.
Selective range processing results in dynamic regional range images {DRRIs). This development is also
placed in a broader context of a biological visual system emulation, specifically redundancies and attention
mechanisms.

The gesture-tracking system described in this paper will be responsible for supplying data manipulation
parameters to interactive data exploration and collaborative visualization software. Processing one range

s

image for every four color images is done at a rate of 10.6 frames per second for a 320x240 image size, and
at a rate of 16.5 frames per second for 160x120 images. Therefore, the method is applicable to real-time
processing. More over, as the Triclops library is currently optimized for thread parallel processing, a much
greater speedup can be achieved on a dual-processor NT machine (we plan to move the system there in
the near future).

Robustness of the approach is achieved with multiple input feature sets. Depth filters are necessary in
addition to color, motion and shape filters. Increased speed of processing can also facilitate a combination

of intensity- and range-based input features. Range data enables localized search for specific features,

which improves tracking reliability and speed.

iition, to deter-
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DRRIs can be included in motion analysis, trajectory computation,

mine what types of gestures are natural and feasible for robust tracking and interpretation for interactive
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exploration of large data sets and virtual environments. They can be easily plotted in a 3-D space for

movement trajectory parameterization.
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A Appendix

A.1 Range Computation

The Triclops stereo vision system [21] computes range based on triangulation between cameras. It consists
of a three-camera module. Offset in positions of the cameras produces differences in resulting images.

These images are compared using square masks to establish correspondences [21]:
MM
2 3
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Where dyyin and dype; are the minimum and maximum disparities, M is the mask size, Ipjgn: and Ijeyy

are the right and left images, respectively [21]. Since the camera parameters (their relative positions, the
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focal length and resolution) are fixed, re-calibration is not usually required. According to the multi-baseline
stereo theory [22, 18] used in the stereo computation by the system, distance z to the scene point is related

to the disparity d, baseline length B and focal length F":
z = BF = 2

The total amount of computation for stereo processing per frame (required for the Sum of Absolute

Differences algorithm} is estimated as [18]:
N*M%(C - 1)P (3)

where N? is the image size, C is the number of cameras (three for the system used), and P is the

number of operations per one square difference calculation.
A.2 SCT Color Space

The main reason SCT became an integral part in numerous applications in the medical imaging [10] and
robotics [11] is because it separates the color and brightness information. This allows for a much more
reliable segmentation based on the color data which is normally greatly affected by the lighting conditions.

The spherical coordinate transform from the RGB space into a LAB space is defined as [11]:

L=vVR+G + B

LA = cos™! [%] (4)
LB =cos™! [fgii%fl_)]

where L i3 the one-dimensional brightness space, and angles A and B determine a two-dimensional color
space. Color normalization provides SCTs insensitivity to variations in illumination. L can be viewed as
a norm of the vector from the origin to the point in RGB space, A is the angle between the vector and
the blue axis, and B is the angle between the red axis and the projection of the vector onto the RG plane

(Figure 9(a)). As a result of the transform, a new color space is represented by a color triangle which
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discrimination. The minimum and maximum A and B values are calculated, defining such areas within
the triangle in equal angular increments. The RGB means are defined for each class.
Pixels with certain color properties are found in the image using the minimum distance classifier with

Mahalanobis distance. It can be defined as a distance from the feature vector X to the mean vector M,

r=/(X - M)Cs (X — M) (5)

where C,. is the covariance matrix for X.

BLUE

RED

Figure 9: RGB and LAB color spaces: (a) LAB values for a point in RGB space, (b) partitioning of the
color triangle into classes.
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